
Agner Fog, Technical University of Denmark

Optimizing software performance using
vector instructions
Invited talk at Speed-B conference, October 19–21, 2016, Utrecht, The Netherlands.

Abstract

Microprocessor factories have a problem obeying Moore's law because of physical

limitations. The answer is increasing parallelism in the form of multiple CPU cores and

vector instructions (Single Instruction Multiple Data - SIMD). This is a challenge to

software developers who have to adapt to a moving target of new instruction set

additions and increasing vector sizes. Most of the software industry is lagging several

years behind the available hardware because of these problems. Other challenges are

tasks that cannot easily be executed with vector instructions, such as sequential

algorithms and lookup tables. The talk will discuss methods for overcoming these

problems and utilize the continuously growing power of microprocessors on the

market. A few problems relevant to cryptographic software will be covered, and the

outlook for the future will be discussed.

Find more on these topics at author website:

www.agner.org/optimize

http://www.agner.org/optimize

Moore's law

The clock frequency has stopped growing due to physical limitations. Instead, the number of CPU cores and the

size of vector registers is growing.

Hierarchy of bottlenecks

 Program installation

 Program load, JIT compile, DLL's

 System database

 Network access

 File input/output

 Graphical user interface

 RAM access, cache utilization

 Algorithm

 Dependency chains

 CPU pipeline and execution units

Sp
eed

 →

Remove the most limiting bottlenecks first. Find the hot spots.

Platforms

 x86

 ARM

 GPU

 Many-core processors

Programming language

 Wizards, point-and-click tools

 Java, C#, Visual Basic

 C/C++

 C/C++ using intrinsic functions

 Assembly language

fast d
evelo

p
m

en
t —

 fast execu
tio

n

←
 →

C++ compilers:

Gnu, Clang, Intel, PathScale, Microsoft

Memory allocation

 Data used together should be stored together

 Allocate few large blocks rather than many small

 Recycle allocated memory

 Avoid linked lists and STL containers

 Use local variables inside functions

Three parallelization methods

1. multiple cores

2. instruction level parallelism

 R2 = R2 / R1

 R4 = R3 * R1 (R3 delayed)

 R1 = R1 + R4

The lines can execute simultaneously or in any order if R1 is renamed

3. vector instructions

Fine-grained versus coarse-grained parallelism

CPU dispatching

FTC: "Intel sought to undercut the performance advantage of non-Intel x86 CPUs relative to Intel x86

CPUs when it redesigned and distributed software products, such as compilers and libraries".

Link to discussion.

http://agner.org/optimize/blog/read.php?i=107

Common pitfalls for CPU dispatching:

 Coding for known present processors rather than future

processors

 Failure to handle unknown processors properly

 Thinking in terms of specific processor models rather

than processor features

 Making too many branches

 Underestimating the time lag between software

development and use

 Underestimating the costs of developing, testing and

maintaining multiple code versions

 Ignoring virtualization

Efficient dispatch method: Make a function pointer that is

set to the appropriate version after first call.

Optimizations done by the compiler

 Function inlining

 Constant folding and constant propagation

 Register variables, live range analysis

 Common subexpression elimination

 Loop unrolling

 Loop invariant code motion

 Induction variables

 Instruction scheduling

 Algebraic reductions

Obstacles to optimization by compiler

 Cannot optimize across modules

 Pointer aliasing

 Pure functions

 Algebraic reduction of floating point

Optimizations done by the CPU

 Out of order execution

 Register renaming

 Branch prediction

 Data prefetching

Obstacles to optimization by the CPU

 Long dependency chains

 Loop-carried dependency chains

 Poorly predictable branches

 Memory allocation in small noncontiguous blocks

Vector coding methods

 Assembler

 Inline assembly

 Intrinsic functions

 Vector classes

 Automatic vectorization by
compiler

 Use third party function
library

Vector classes
Vec16f a, b, c; // Declare vector objects

a = b + c; // 16 parallel additions

www. agner.org/optimize/#vectorclass

Obstacles to vectorization

 sequential code

 pointer aliasing

 array size not divisible by vector size

 lookup tables

http://www.agner.org/optimize#vectorclass

Use permute instructions for table lookup

A permute instruction can be used for parallel table lookup by putting the

lookup table in the input vector. Some instructions have two input vectors,

which doubles the size of the table.

Largest table size with 8-bit granularity is 16 elements (SSSE3, 32 with AMD XOP).

Largest table size with 16-bit granularity is 64 elements (AVX512BW)

Largest table size with 32-bit granularity is 32 elements (AVX512F)

Application-specific instructions in latest x86 processors

 AES instructions. 128 bit vectors

 CRC32. 32 bits

 SHA. Hashing 128 bit vectors

 RDRAND, RDSEED. Physical random generator, 64 bits

Possible future trends

 More CPU cores

 Longer vector registers (1024, 2048 bits)

 More application-specific instructions

 Programmable logic (FPGA)

Proposal for instruction set that does not need CPU dispatching

Simple loop:

Vector loop:

Loop with variable vector length

http://www.forwardcom.info.

http://www.forwardcom.info/

