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Context

Cryptography can mitigate critical security issues in embedded devices.

Security property Technique Primitive
Protecting data at rest FS-level encryption Block cipher
Protecting data in transit Secure channel Auth block/stream cipher
Secure software updates Code signing Digital signatures
Secure booting Integrity/Authentication Hash functions, MACs
Secure debugging Entity authentication Challenge-response
Device id/auth Auth protocol PKC
Key distribution Key exchange PKC

Several algorithms required to implement primitives:

• Block and stream ciphers
• Hash functions
• AEAD and Message Authentication Codes (MACs)
• Elliptic Curve Cryptography
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Context

Problem: Why “lightweight cryptography”? Shouldn’t all cryptography
be ideally lightweight?

From Mouha in [Mou15]
“Although the question seems simple, this appears to be a quite
controversial subject. (...) It is important to note that lightweight
cryptography should not be equated with weak cryptography”.

Solution: Alternative name for application-specific cryptography or
application-driven cryptographic design?
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Summary

We discuss techniques for efficient and secure implementations of
lightweight encryption in software:

1. Fantomas, an LS-Design proposed in [GLSV14].
2. PRESENT, a Substitution-Permutation Network (SPN) [BKL+07].
3. Curve25519 for Elliptic Curve Cryptography.

.

We target low-end and NEON-capable ARM processors, typical of
embedded systems. Results are part of a project sponsored by LG
involving 7 students and more than 30 symmetric (C) and asymmetric
(ASM) algorithms.
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Construction

LS-Designs
Paradigm to construct block ciphers providing:

• Lightweight designs from simple substitution and linear layers.
• Friendliness to side-channel countermeasures (bitslicing and

masking).
• Tweakable variant for authenticated encryption (SCREAMv3).

l bits

s bits
State Matrix
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Construction

Algorithm 1 LS-Design encrypting block B into ciphertext C with key K.

1: C← B⊕ K ▷ C represents an s× l-bit matrix
2: for 0 ≤ r < Nr do
3: for 0 ≤ i < l do ▷ S-box layer
4: C[i, ⋆] = S[C[i, ⋆]]
5: end for
6: for 0 ≤ j < s do ▷ L-box layer
7: C[⋆, j] = L[C[⋆, j]]
8: end for
9: C← C⊕ K⊕ C(r) ▷ Key and round constant addition

10: end for
11: return C
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Algorithm

The LS-Design paper introduced an involutive instance (Robin), and a
non-involutive cipher (Fantomas).
Fantomas

• 128-bit key length and block size.
• No key scheduling.
• 8-bit (3/5-bit 3-round) S-boxes from MISTY.
• L-box from vector-matrix product in F2.
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Implementation in 32/64 bits

Internal state can be represented with union to respect strict aliasing
rules for 16/32/64-bit operations:

typedef union {
uint32_t u32 ; // uint64_t u64 ;
uint16_t u16 [ 2 ] ; // uint16_t u16 [ 4 ] ;

} U32_t ;

Bitsliced S-boxes operate over 16-bit chunks in the u16 portion.

Key addition works using the u32/u64 internal state:

f o r ( j =0; j < 4 ; j++) // f o r ( j =0; j < 2 ; j++)
s t [ j ] . u32 ^= key_32 [ j ] ; // s t [ j ] . u64 ^= key_64 [ j ] ;
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Implementation in 32/64 bits

L-box can be evaluated using two precomputed tables:

/* Unprotected L−box v e r s i o n */
s t [ j ] . u16 [ 0 ] = LBoxH [ s t [ j ] . u16 [0]>>8] ^

LBoxL [ s t [ j ] . u16 [ 0 ] & 0 x f f ] ;
s t [ j ] . u16 [ 1 ] = LBoxH [ s t [ j ] . u16 [1]>>8] ^

LBoxL [ s t [ j ] . u16 [ 1 ] & 0 x f f ] ;

Problem: Beware of cache-timing attacks!

Attacker who monitors L-box positions in cache can recover internal
state. Internal state trivially reveals keys and plaintext if recovered right
before/after last/first key addition.
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Implementation in 32/64 bits

L-box can be evaluated using two precomputed tables:

/* Unprotected L−box v e r s i o n */
s t [ j ] . u16 [ 0 ] = LBoxH [ s t [ j ] . u16 [0]>>8] ^

LBoxL [ s t [ j ] . u16 [ 0 ] & 0 x f f ] ;
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Problem: Beware of cache-timing attacks!

Attacker who monitors L-box positions in cache can recover internal
state. Internal state trivially reveals keys and plaintext if recovered right
before/after last/first key addition.
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Construction

Algorithm 2 LS-Design encrypting block B into ciphertext C with key K.

1: C← B⊕ K ▷ C represents an s× l-bit matrix
2: for 0 ≤ r < Nr do
3: for 0 ≤ i < l do ▷ S-box layer
4: C[i, ⋆] = S[C[i, ⋆]]
5: end for
6: for 0 ≤ j < s do ▷ L-box layer
7: C[⋆, j] = L[C[⋆, j]]
8: end for
9: C← C⊕ K⊕ C(r) ▷ Key and round constant addition

10: end for
11: return C
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Implementation in 32/64 bits

Solution: We can replace memory access with online computation:

s t a t i c i n l i n e type_t LBox( type_t x , type_t y , u int8_t s ) {
x &= y ;
x ^= x >> 8;
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return ( x & 0x00010001 ) << s ;
// r e t u r n ( x & 0x0001000100010001 ) << s

}
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NEON implementation

L-boxes can be evaluated using shuffling instructions to compute 8
table lookups in parallel.

L-box in
Registers

Important: 32-bit implementations can process 2 blocks and vector
implementations can process 16 blocks simultaneously in CTR mode.
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NEON implementation

Counter transformation for the vectorized CTR implementation:
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NEON implementation

Key must be transformed to follow representation.
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Experiments I

Benchmark: Encrypt+decrypt 128 bytes in CBC or encrypt 128 bits in
CTR mode.

• Related work: FELICS (triathlon of block ciphers) [DCK+15].
• Platforms:

1. Cortex-M3 (Arduino Due, 32 bits):
• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns

-mcpu=cortex-m3 -mthumb.
• Cycles count by converting the output of the micros() function.

2. Cortex-M4 (Teensy 3, 32 bits):
• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns

-mcpu=cortex-m3 -mthumb.
• Cycles counts through CCNT register.

3. Cortex-A53 (ODROID OC2, 64 bits):
• GCC 6.1.1 with flags -O3 -fno-schedule-insns -mcpu=cortex-a53

-mthumb -march=native.
• Cycles counts through CCNT register.
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Results
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Results
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Experiments II

Benchmark: Encrypt 128 bits in CTR mode.

• Related work: Ajusted timings from SCREAMv3 presentation in
the CAESAR competition [GLS+15].

• Platforms:
1. Cortex-A15 (ODROID XU4, 32 bits + NEON):

• GCC 6.1.1 with flags -O3 -fno-schedule-insns -mcpu=cortex-a15
-mthumb -march=native.

• Cycles count through CCNT register.

2. Cortex-A53 (ODROID OC2, 64 bits + NEON):
• GCC 6.1.1 with flags -O3 -fno-schedule-insns -mcpu=cortex-a53

-mthumb -march=native.
• Cycles counts through CCNT register.
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Results
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Side-channel resistance

1. Constant time implementation against cache-timing attacks:
• Performance penalty of 3 times in low-end ARMs.
• Inherent in vector implementations.
• Not sufficient against other side-channel attacks.

2. Masked implementation against power attacks:
• Significant quadratic performance penalty (almost twice slower with

a single mask).
• Not sufficient against cache timing attacks.
• Key masking to force attacker to recover all shares (additional

10-20% overhead).
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Conclusions

Fantomas has some limitations regarding side-channel resistance:

• S-boxes do not require tables, but are expensive to mask.
• L-boxes are free to mask, but expensive to compute in constant

time.

New state-of-the-art implementations of Fantomas:

• Portable implementation in C is 35% and 52% faster
than [DCK+15] on Cortex-M, and similar in code size.

• New countermeasures against cache timing attacks.
• NEON implementation is 40% faster in ARM than [GLS+15].
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Algorithm

Proposed in 2007 and standardized by ISO/IEC, one of the first
lightweight block cipher designs.

PRESENT

• Substitution-permutation network.
• 80-bit or 128-bit key and 64-bit block.
• Key schedule for 31 rounds with 64-bit subkeys subkeyi.
• 4-bit S-boxes with Boolean representation friendly to bitslicing.
• Bit permutation P such that P2 = P−1.
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Algorithm

Figure 2: 4-bit S-Boxes in PRESENT.

P(i) =
{

16i mod 63 if i ̸= 63
63 if i = 63
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Algorithm

Algorithm 3 PRESENT encrypting block B to ciphertext block C.

1: C← B
2: for i = 1 to 31 do
3: C← C⊕ subkeyi
4: C← S(C)
5: C← P(C)
6: end for
7: C← P⊕ subkey32
8: return C
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Implementation

PRESENT optimizations

1. Decompose permutation P2 in software-friendly involutive
permutations P0 and P1.

2. Rearrange rounds to accommodate new permutations.
3. Efficient bitsliced S-boxes from [CHM11].
4. For CTR mode in 32 bits, process two blocks simultaneously.
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Implementation

Figure 3: Permutation P in PRESENT.

Figure 4: Permutations P0 and P1 for optimized PRESENT.
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Implementation

f
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Implementation

Algorithm 4 PRESENT encrypting block B to ciphertext block C.

1: C← B
2: for i = 1 to 15 do
3: C← C⊕ subkey2i−1
4: C← P0(C)
5: C← S(C)
6: C← P1(C)
7: C← C⊕ P(subkey2i)

8: C← S(C)
9: end for

10: C← P⊕ subkey31
11: C← P(C)
12: C← S(C)
13: C← C⊕ subkey32
14: return C
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Experiments I

Benchmark: Encrypt+decrypt+key schedule 128 bytes in CBC or encrypt
128 bits in CTR mode.

• Related work: ASM implementation in FELICS [DCK+15],
2nd-order constant-time masked ASM implementation of
PRESENT [dGPdLP+16].

• Platforms:
1. Cortex-M3 (Arduino Due, 32 bits):

• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns
-mcpu=cortex-m3 -mthumb.

• Cycles count by converting the output of the micros() function.
2. Cortex-M4 (Teensy 3.2, 32 bits):

• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns
-mcpu=cortex-m3 -mthumb.

• Cycles counts through CCNT register.
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Results
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Results
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Conclusions

Side-channel resistance:

• PRESENT can be efficiently implemented in constant time.
• Performance penalty from masking is lower than Fantomas, mainly

due to choice of S-boxes.

New state-of-the-art implementations of PRESENT:

• S-boxes can be bitsliced (no tables) and permutations can be made
much faster.

• Performance improvement of 8x factor.
• Our constant-time CTR implementation is now among the fastest

block ciphers in the FELICS benchmark (competitive with SPARX).
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Detailed timings

Table 1: Comparison of block ciphers implemented in C by this work with AES
in Assembly for encrypting 128 bits in CTR mode across long messages.

Cortex-M3 Cortex-M4

Block cipher Unprotected CT Unprotected CT ROM
Fantomas 2291 9063 2191 7866 1272
PRESENT-80 - 2052 - 1597 1124
AES-128 [SS16] 546 1617 554 1618 12120
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Field arithmetic in F2255−19

Difficult choice of multiplication instructions in Cortex-M3 [dG15]:

• MUL: effectively 16 × 16 → 32, 1 cycle.
• MLA (acc): effectively 16 × 16 → 32, 2 cycles.
• UMULL: 32 × 32 → 64, 3-5 cycles.
• UMLAL: 32 × 32 → 64, 4-7 cycles.

Side-channel attack known using early-terminating multiplications for
ECDH [GOPT09], although not clear if applicable to laddering.
Countermeasures replace UMULL with instructions costing 12-19
cycles [Ham11].

Important: At this penalty, Cortex-M0 implementation [DHH+15] should
still be competitive.
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Field arithmetic in F2255−19

Previous work in constant time with Karatsuba over reduced radix [dG15].

Alternative implementation on Cortex-M4:

• Full-radix to enjoy arithmetic density and single-cycle multiplications.
• Comba with register allocation inspired by operand caching [HW11].
• Arithmetic closely follow ideas from the full-radix Cortex-M0

implementation.
• Check next presentation. :)
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Result

Table 2: Experimental results for different implementations of randomized
X25519 and Ed25519 on ARM processors. The figures include timings for the
field arithmetic and protocol operations. Measurements for latency in clock
cycles were taken as the average of 1000 executions by benchmarking code
directly in the M4 board.

Operation Ours Next presentation :)
Addition 85 cc 106 cc
Subtraction 85 cc 108 cc
Multiplication 532 cc 546 cc
Squaring 532 cc 362 cc
Inversion 140,306 cc 96,337 cc
X25519 1,607,860 cc 1,658,083 cc
Code size of X25519 3,102B of ROM 2,952B of ROM
Signature 1,122,709 cc -
Verification 2,747,329 cc -
Code size for Ed25519 32,210B of ROM -
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Final notes

Important: All timings cross-checked with the MPS2 ARM development
board provided by LG.

Fantomas for x86/SSE can be found at
https://github.com/rafajunio/fantomas-x86.
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Questions?
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